home *** CD-ROM | disk | FTP | other *** search
- #include "vis.h"
-
- // =====================================================================================
- // CheckStack
- // =====================================================================================
- #ifdef USE_CHECK_STACK
- static void CheckStack(const leaf_t* const leaf, const threaddata_t* const thread)
- {
- pstack_t* p;
-
- for (p = thread->pstack_head.next; p; p = p->next)
- {
- if (p->leaf == leaf)
- Error("CheckStack: leaf recursion");
- }
- }
- #endif
-
- // =====================================================================================
- // AllocStackWinding
- // =====================================================================================
- inline static winding_t* AllocStackWinding(pstack_t* const stack)
- {
- int i;
-
- for (i = 0; i < 3; i++)
- {
- if (stack->freewindings[i])
- {
- stack->freewindings[i] = 0;
- return &stack->windings[i];
- }
- }
-
- Error("AllocStackWinding: failed");
-
- return NULL;
- }
-
- // =====================================================================================
- // FreeStackWinding
- // =====================================================================================
- inline static void FreeStackWinding(const winding_t* const w, pstack_t* const stack)
- {
- int i;
-
- i = w - stack->windings;
-
- if (i < 0 || i > 2)
- return; // not from local
-
- if (stack->freewindings[i])
- Error("FreeStackWinding: allready free");
- stack->freewindings[i] = 1;
- }
-
- // =====================================================================================
- // ChopWinding
- // =====================================================================================
- inline winding_t* ChopWinding(winding_t* const in, pstack_t* const stack, const plane_t* const split)
- {
- vec_t dists[128];
- int sides[128];
- int counts[3];
- vec_t dot;
- int i;
- vec3_t mid;
- winding_t* neww;
-
- counts[0] = counts[1] = counts[2] = 0;
-
- if (in->numpoints > (sizeof(sides) / sizeof(*sides)))
- {
- Error("Winding with too many sides!");
- }
-
- // determine sides for each point
- for (i = 0; i < in->numpoints; i++)
- {
- dot = DotProduct(in->points[i], split->normal);
- dot -= split->dist;
- dists[i] = dot;
- if (dot > ON_EPSILON)
- {
- sides[i] = SIDE_FRONT;
- }
- else if (dot < -ON_EPSILON)
- {
- sides[i] = SIDE_BACK;
- }
- else
- {
- sides[i] = SIDE_ON;
- }
- counts[sides[i]]++;
- }
-
- if (!counts[1])
- {
- return in; // completely on front side
- }
-
- if (!counts[0])
- {
- FreeStackWinding(in, stack);
- return NULL;
- }
-
- sides[i] = sides[0];
- dists[i] = dists[0];
-
- neww = AllocStackWinding(stack);
-
- neww->numpoints = 0;
-
- for (i = 0; i < in->numpoints; i++)
- {
- vec_t* p1 = in->points[i];
-
- if (neww->numpoints == MAX_POINTS_ON_FIXED_WINDING)
- {
- Warning("ChopWinding : rejected(1) due to too many points\n");
- FreeStackWinding(neww, stack);
- return in; // can't chop -- fall back to original
- }
-
- if (sides[i] == SIDE_ON)
- {
- VectorCopy(p1, neww->points[neww->numpoints]);
- neww->numpoints++;
- continue;
- }
- else if (sides[i] == SIDE_FRONT)
- {
- VectorCopy(p1, neww->points[neww->numpoints]);
- neww->numpoints++;
- }
-
- if ((sides[i + 1] == SIDE_ON) | (sides[i + 1] == sides[i])) // | instead of || for branch optimization
- {
- continue;
- }
-
- if (neww->numpoints == MAX_POINTS_ON_FIXED_WINDING)
- {
- Warning("ChopWinding : rejected(2) due to too many points\n");
- FreeStackWinding(neww, stack);
- return in; // can't chop -- fall back to original
- }
-
- // generate a split point
- {
- unsigned tmp = i + 1;
- if (tmp >= in->numpoints)
- {
- tmp = 0;
- }
- const vec_t* p2 = in->points[tmp];
-
- dot = dists[i] / (dists[i] - dists[i + 1]);
-
- const vec_t* normal = split->normal;
- const vec_t dist = split->dist;
- unsigned int j;
- for (j = 0; j < 3; j++)
- { // avoid round off error when possible
- if (normal[j] < (1.0 - NORMAL_EPSILON))
- {
- if (normal[j] > (-1.0 + NORMAL_EPSILON))
- {
- mid[j] = p1[j] + dot * (p2[j] - p1[j]);
- }
- else
- {
- mid[j] = -dist;
- }
- }
- else
- {
- mid[j] = dist;
- }
- }
- }
-
- VectorCopy(mid, neww->points[neww->numpoints]);
- neww->numpoints++;
- }
-
- // free the original winding
- FreeStackWinding(in, stack);
-
- return neww;
- }
-
- // =====================================================================================
- // AddPlane
- // =====================================================================================
- #ifdef RVIS_LEVEL_2
- inline static void AddPlane(pstack_t* const stack, const plane_t* const split)
- {
- int j;
-
- if (stack->clipPlaneCount)
- {
- for (j = 0; j < stack->clipPlaneCount; j++)
- {
- if (fabs((stack->clipPlane[j]).dist - split->dist) <= EQUAL_EPSILON &&
- VectorCompare((stack->clipPlane[j]).normal, split->normal))
- {
- return;
- }
- }
- }
- stack->clipPlane[stack->clipPlaneCount] = *split;
- stack->clipPlaneCount++;
- }
- #endif
-
- // =====================================================================================
- // ClipToSeperators
- // Source, pass, and target are an ordering of portals.
- // Generates seperating planes canidates by taking two points from source and one
- // point from pass, and clips target by them.
- // If the target argument is NULL, then a list of clipping planes is built in
- // stack instead.
- // If target is totally clipped away, that portal can not be seen through.
- // Normal clip keeps target on the same side as pass, which is correct if the
- // order goes source, pass, target. If the order goes pass, source, target then
- // flipclip should be set.
- // =====================================================================================
- inline static winding_t* ClipToSeperators(
- const winding_t* const source,
- const winding_t* const pass,
- winding_t* const a_target,
- const bool flipclip,
- pstack_t* const stack)
- {
- int i, j, k, l;
- plane_t plane;
- vec3_t v1, v2;
- float d;
- int counts[3];
- bool fliptest;
- winding_t* target = a_target;
-
- const unsigned int numpoints = source->numpoints;
-
- // check all combinations
- for (i=0, l=1; i < numpoints; i++, l++)
- {
- if (l == numpoints)
- {
- l = 0;
- }
-
- VectorSubtract(source->points[l], source->points[i], v1);
-
- // fing a vertex of pass that makes a plane that puts all of the
- // vertexes of pass on the front side and all of the vertexes of
- // source on the back side
- for (j = 0; j < pass->numpoints; j++)
- {
- VectorSubtract(pass->points[j], source->points[i], v2);
- CrossProduct(v1, v2, plane.normal);
- if (VectorNormalize(plane.normal) < ON_EPSILON)
- {
- continue;
- }
- plane.dist = DotProduct(pass->points[j], plane.normal);
-
- // find out which side of the generated seperating plane has the
- // source portal
- fliptest = false;
- for (k = 0; k < numpoints; k++)
- {
- if ((k == i) | (k == l)) // | instead of || for branch optimization
- {
- continue;
- }
- d = DotProduct(source->points[k], plane.normal) - plane.dist;
- if (d < -ON_EPSILON)
- { // source is on the negative side, so we want all
- // pass and target on the positive side
- fliptest = false;
- break;
- }
- else if (d > ON_EPSILON)
- { // source is on the positive side, so we want all
- // pass and target on the negative side
- fliptest = true;
- break;
- }
- }
- if (k == numpoints)
- {
- continue; // planar with source portal
- }
-
- // flip the normal if the source portal is backwards
- if (fliptest)
- {
- VectorSubtract(vec3_origin, plane.normal, plane.normal);
- plane.dist = -plane.dist;
- }
-
- // if all of the pass portal points are now on the positive side,
- // this is the seperating plane
- counts[0] = counts[1] = counts[2] = 0;
- for (k = 0; k < pass->numpoints; k++)
- {
- if (k == j)
- {
- continue;
- }
- d = DotProduct(pass->points[k], plane.normal) - plane.dist;
- if (d < -ON_EPSILON)
- {
- break;
- }
- else if (d > ON_EPSILON)
- {
- counts[0]++;
- }
- else
- {
- counts[2]++;
- }
- }
- if (k != pass->numpoints)
- {
- continue; // points on negative side, not a seperating plane
- }
-
- if (!counts[0])
- {
- continue; // planar with seperating plane
- }
-
- // flip the normal if we want the back side
- if (flipclip)
- {
- VectorSubtract(vec3_origin, plane.normal, plane.normal);
- plane.dist = -plane.dist;
- }
-
- if (target != NULL)
- {
- // clip target by the seperating plane
- target = ChopWinding(target, stack, &plane);
- if (!target)
- {
- return NULL; // target is not visible
- }
- }
- else
- {
- AddPlane(stack, &plane);
- }
-
- #ifdef RVIS_LEVEL_1
- break; /* Antony was here */
- #endif
- }
- }
-
- return target;
- }
-
- // =====================================================================================
- // RecursiveLeafFlow
- // Flood fill through the leafs
- // If src_portal is NULL, this is the originating leaf
- // =====================================================================================
- inline static void RecursiveLeafFlow(const int leafnum, const threaddata_t* const thread, const pstack_t* const prevstack)
- {
- pstack_t stack;
- leaf_t* leaf;
-
- leaf = &g_leafs[leafnum];
- #ifdef USE_CHECK_STACK
- CheckStack(leaf, thread);
- #endif
-
- {
- const unsigned offset = leafnum >> 3;
- const unsigned bit = (1 << (leafnum & 7));
-
- // mark the leaf as visible
- if (!(thread->leafvis[offset] & bit))
- {
- thread->leafvis[offset] |= bit;
- thread->base->numcansee++;
- }
- }
-
- #ifdef USE_CHECK_STACK
- prevstack->next = &stack;
- stack.next = NULL;
- #endif
- stack.head = prevstack->head;
- stack.leaf = leaf;
- stack.portal = NULL;
- #ifdef RVIS_LEVEL_2
- stack.clipPlaneCount = -1;
- stack.clipPlane = NULL;
- #endif
-
- // check all portals for flowing into other leafs
- unsigned i;
- portal_t** plist = leaf->portals;
-
- for (i = 0; i < leaf->numportals; i++, plist++)
- {
- portal_t* p = *plist;
-
- #if ZHLT_ZONES
- portal_t * head_p = stack.head->portal;
- if (g_Zones->check(head_p->zone, p->zone))
- {
- continue;
- }
- #endif
-
- {
- const unsigned offset = p->leaf >> 3;
- const unsigned bit = 1 << (p->leaf & 7);
-
- if (!(stack.head->mightsee[offset] & bit))
- {
- continue; // can't possibly see it
- }
- if (!(prevstack->mightsee[offset] & bit))
- {
- continue; // can't possibly see it
- }
- }
-
- // if the portal can't see anything we haven't allready seen, skip it
- {
- long* test;
-
- if (p->status == stat_done)
- {
- test = (long*)p->visbits;
- }
- else
- {
- test = (long*)p->mightsee;
- }
-
- {
- const int bitlongs = g_bitlongs;
-
- {
- long* prevmight = (long*)prevstack->mightsee;
- long* might = (long*)stack.mightsee;
-
- unsigned j;
- for (j = 0; j < bitlongs; j++, test++, might++, prevmight++)
- {
- (*might) = (*prevmight) & (*test);
- }
- }
-
- {
- long* might = (long*)stack.mightsee;
- long* vis = (long*)thread->leafvis;
- unsigned j;
- for (j = 0; j < bitlongs; j++, might++, vis++)
- {
- if ((*might) & ~(*vis))
- {
- break;
- }
- }
-
- if (j == g_bitlongs)
- { // can't see anything new
- continue;
- }
- }
- }
- }
-
- // get plane of portal, point normal into the neighbor leaf
- stack.portalplane = &p->plane;
- plane_t backplane;
- VectorSubtract(vec3_origin, p->plane.normal, backplane.normal);
- backplane.dist = -p->plane.dist;
-
- if (VectorCompare(prevstack->portalplane->normal, backplane.normal))
- {
- continue; // can't go out a coplanar face
- }
-
- stack.portal = p;
- #ifdef USE_CHECK_STACK
- stack.next = NULL;
- #endif
- stack.freewindings[0] = 1;
- stack.freewindings[1] = 1;
- stack.freewindings[2] = 1;
-
- stack.pass = ChopWinding(p->winding, &stack, thread->pstack_head.portalplane);
- if (!stack.pass)
- {
- continue;
- }
-
- stack.source = ChopWinding(prevstack->source, &stack, &backplane);
- if (!stack.source)
- {
- continue;
- }
-
- if (!prevstack->pass)
- { // the second leaf can only be blocked if coplanar
- RecursiveLeafFlow(p->leaf, thread, &stack);
- continue;
- }
-
- stack.pass = ChopWinding(stack.pass, &stack, prevstack->portalplane);
- if (!stack.pass)
- {
- continue;
- }
-
- #ifdef RVIS_LEVEL_2
- if (stack.clipPlaneCount == -1)
- {
- stack.clipPlaneCount = 0;
- stack.clipPlane = (plane_t*)alloca(sizeof(plane_t) * prevstack->source->numpoints * prevstack->pass->numpoints);
-
- ClipToSeperators(prevstack->source, prevstack->pass, NULL, false, &stack);
- ClipToSeperators(prevstack->pass, prevstack->source, NULL, true, &stack);
- }
-
- if (stack.clipPlaneCount > 0)
- {
- unsigned j;
- for (j = 0; j < stack.clipPlaneCount && stack.pass != NULL; j++)
- {
- stack.pass = ChopWinding(stack.pass, &stack, &(stack.clipPlane[j]));
- }
-
- if (stack.pass == NULL)
- continue;
- }
- #else
-
- stack.pass = ClipToSeperators(stack.source, prevstack->pass, stack.pass, false, &stack);
- if (!stack.pass)
- {
- continue;
- }
-
- stack.pass = ClipToSeperators(prevstack->pass, stack.source, stack.pass, true, &stack);
- if (!stack.pass)
- {
- continue;
- }
- #endif
-
- if (g_fullvis)
- {
- stack.source = ClipToSeperators(stack.pass, prevstack->pass, stack.source, false, &stack);
- if (!stack.source)
- {
- continue;
- }
-
- stack.source = ClipToSeperators(prevstack->pass, stack.pass, stack.source, true, &stack);
- if (!stack.source)
- {
- continue;
- }
- }
-
- // flow through it for real
- RecursiveLeafFlow(p->leaf, thread, &stack);
- }
-
- #ifdef RVIS_LEVEL_2
- #if 0
- if (stack.clipPlane != NULL)
- {
- free(stack.clipPlane);
- }
- #endif
- #endif
- }
-
- // =====================================================================================
- // PortalFlow
- // =====================================================================================
- void PortalFlow(portal_t* p)
- {
- threaddata_t data;
- unsigned i;
-
- if (p->status != stat_working)
- Error("PortalFlow: reflowed");
-
- p->visbits = (byte*)calloc(1, g_bitbytes);
-
- memset(&data, 0, sizeof(data));
- data.leafvis = p->visbits;
- data.base = p;
-
- data.pstack_head.head = &data.pstack_head;
- data.pstack_head.portal = p;
- data.pstack_head.source = p->winding;
- data.pstack_head.portalplane = &p->plane;
- for (i = 0; i < g_bitlongs; i++)
- {
- ((long*)data.pstack_head.mightsee)[i] = ((long*)p->mightsee)[i];
- }
- RecursiveLeafFlow(p->leaf, &data, &data.pstack_head);
-
- #ifdef ZHLT_NETVIS
- p->fromclient = g_clientid;
- #endif
- p->status = stat_done;
- #ifdef ZHLT_NETVIS
- Flag_VIS_DONE_PORTAL(g_visportalindex);
- #endif
- }
-
- // =====================================================================================
- // SimpleFlood
- // This is a rough first-order aproximation that is used to trivially reject some
- // of the final calculations.
- // =====================================================================================
- static void SimpleFlood(byte* const srcmightsee, const int leafnum, byte* const portalsee, unsigned int* const c_leafsee)
- {
- unsigned i;
- leaf_t* leaf;
- portal_t* p;
-
- {
- const unsigned offset = leafnum >> 3;
- const unsigned bit = (1 << (leafnum & 7));
-
- if (srcmightsee[offset] & bit)
- {
- return;
- }
- else
- {
- srcmightsee[offset] |= bit;
- }
- }
-
- (*c_leafsee)++;
- leaf = &g_leafs[leafnum];
-
- for (i = 0; i < leaf->numportals; i++)
- {
- p = leaf->portals[i];
- if (!portalsee[p - g_portals])
- {
- continue;
- }
- SimpleFlood(srcmightsee, p->leaf, portalsee, c_leafsee);
- }
- }
-
- #define PORTALSEE_SIZE (MAX_PORTALS*2)
- #ifdef SYSTEM_WIN32
- #pragma warning(push)
- #pragma warning(disable: 4100) // unreferenced formal parameter
- #endif
-
- #ifdef HLVIS_MAXDIST
- // AJM: MVD
- // =====================================================================================
- // BlockVis
- // =====================================================================================
- void BlockVis(int unused)
- {
- int i, j, k, l, m;
- portal_t *p;
- visblocker_t *v;
- visblocker_t *v2;
- leaf_t *leaf;
-
- while(1)
- {
- i = GetThreadWork();
- if(i == -1)
- break;
-
- v = &g_visblockers[i];
-
- // See which visblockers we need
- for(j = 0; j < v->numnames; j++)
- {
- // Find visblocker
- if(!(v2 = GetVisBlock(v->blocknames[j])))
- continue;
-
- // For each leaf in v2, eliminate visibility from v1
- for(k = 0; k < v->numleafs; k++)
- {
- leaf = &g_leafs[v->blockleafs[k]];
-
- for(l = 0; l < leaf->numportals; l++)
- {
- p = leaf->portals[l];
-
- for(m = 0; m < v2->numleafs; m++)
- {
- const unsigned offset = v2->blockleafs[m] >> 3;
- const unsigned bit = (1 << (v2->blockleafs[m] & 7));
-
- p->mightsee[offset] &= ~bit;
- }
- }
- }
- }
- }
- }
-
- // AJM: MVD
- // =====================================================================================
- // GetSplitPortal
- // This function returns a portal on leaf1 that sucessfully seperates leaf1
- // and leaf2
- // =====================================================================================
- static portal_t *GetSplitPortal(leaf_t *leaf1, leaf_t *leaf2)
- {
- int i, k, l;
-
- portal_t *p1;
- portal_t *t;
-
- float check_dist;
-
- for(i = 0, p1 = leaf1->portals[0]; i < leaf1->numportals; i++, p1++)
- {
- hlassert(p1->winding->numpoints >= 3);
-
- // Check to make sure all the points on the other leaf are in front of the portal plane
- for(k = 0, t = leaf2->portals[0]; k < leaf2->numportals; k++, t++)
- {
- for(l = 0; l < t->winding->numpoints; l++)
- {
- check_dist = DotProduct(t->winding->points[l], p1->plane.normal) - p1->plane.dist;
-
- // We make the assumption that all portals face away from their parent leaf
- if(check_dist < -ON_EPSILON)
- goto PostLoop;
- }
- }
-
- PostLoop:
- // If we didn't check all the leaf2 portals, then this leaf1 portal doesn't work
- if(k < leaf2->numportals)
- continue;
-
- // If we reach this point, we found a good portal
- return p1;
- }
-
- // Didn't find any
- return NULL;
- }
-
- // AJM: MVD
- // =====================================================================================
- // MakeSplitPortalList
- // This function returns a portal on leaf1 that sucessfully seperates leaf1
- // and leaf2
- // =====================================================================================
- static void MakeSplitPortalList(leaf_t *leaf1, leaf_t *leaf2, portal_t **portals, int *num_portals)
- {
- int i, k, l;
-
- portal_t *p1;
- portal_t *t;
-
- *num_portals = 0;
-
- float check_dist;
-
- portal_t p_list[MAX_PORTALS_ON_LEAF];
- int c_portal = 0;
-
- if(*portals)
- delete [] *portals;
-
- for(i = 0, p1 = leaf1->portals[0]; i < leaf1->numportals; i++, p1++)
- {
- hlassert(p1->winding->numpoints >= 3);
-
- // Check to make sure all the points on the other leaf are in front of the portal plane
- for(k = 0, t = leaf2->portals[0]; k < leaf2->numportals; k++, t++)
- {
- for(l = 0; l < t->winding->numpoints; l++)
- {
- check_dist = DotProduct(t->winding->points[l], p1->plane.normal) - p1->plane.dist;
-
- // We make the assumption that all portals face away from their parent leaf
- if(check_dist < -ON_EPSILON)
- goto PostLoop;
- }
- }
-
- PostLoop:
- // If we didn't check all the leaf2 portals, then this leaf1 portal doesn't work
- if(k < leaf2->numportals)
- continue;
-
- // If we reach this point, we found a good portal
- memcpy(&p_list[c_portal++], p1, sizeof(portal_t));
-
- if(c_portal >= MAX_PORTALS_ON_LEAF)
- Error("c_portal > MAX_PORTALS_ON_LEAF");
- }
-
- if(!c_portal)
- return;
-
- *num_portals = c_portal;
-
- *portals = new portal_t[c_portal];
- memcpy(*portals, p_list, c_portal * sizeof(portal_t));
- }
-
- // AJM: MVD
- // =====================================================================================
- // DisjointLeafVis
- // This function returns TRUE if neither leaf can see the other
- // Returns FALSE otherwise
- // =====================================================================================
- static bool DisjointLeafVis(int leaf1, int leaf2)
- {
- leaf_t *l = g_leafs + leaf1;
- leaf_t *tl = g_leafs + leaf2;
-
- const unsigned offset_l = leaf1 >> 3;
- const unsigned bit_l = (1 << (leaf1 & 7));
-
- const unsigned offset_tl = leaf2 >> 3;
- const unsigned bit_tl = (1 << (leaf2 & 7));
-
- for(int k = 0; k < l->numportals; k++)
- {
- for(int m = 0; m < tl->numportals; m++)
- {
- if(l->portals[k]->mightsee[offset_tl] & bit_tl)
- goto RetFalse;
- if(tl->portals[m]->mightsee[offset_l] & bit_l)
- goto RetFalse;
-
- if(l->portals[k]->status != stat_none)
- {
- if(l->portals[k]->visbits[offset_tl] & bit_tl)
- goto RetFalse;
- }
- if(tl->portals[m]->status != stat_none)
- {
- if(tl->portals[m]->visbits[offset_l] & bit_l)
- goto RetFalse;
- }
- }
- }
-
- return true;
-
- RetFalse:
- return false;
- }
-
- // AJM: MVD
- // =====================================================================================
- // GetPortalBounds
- // This function take a portal and finds its bounds
- // parallel to the normal of the portal. They will face inwards
- // =====================================================================================
- static void GetPortalBounds(portal_t *p, plane_t **bounds)
- {
- int i;
- vec3_t vec1, vec2;
-
- hlassert(p->winding->numpoints >= 3);
-
- if(*bounds)
- delete [] *bounds;
-
- *bounds = new plane_t[p->winding->numpoints];
-
- // Loop through each set of points and create a plane boundary for each
- for(i = 0; i < p->winding->numpoints; i++)
- {
- VectorSubtract(p->winding->points[(i + 1) % p->winding->numpoints],p->winding->points[i],vec1);
-
- // Create inward normal for this boundary
- CrossProduct(p->plane.normal, vec1, vec2);
- VectorNormalize(vec2);
-
- VectorCopy(vec2, (*bounds)[i].normal);
- (*bounds)[i].dist = DotProduct(p->winding->points[i], vec2);
- }
- }
-
- // AJM: MVD
- // =====================================================================================
- // ClipWindingsToBounds
- // clips all the windings with all the planes (including original face) and outputs
- // what's left int "out"
- // =====================================================================================
- static void ClipWindingsToBounds(winding_t *windings, int numwindings, plane_t *bounds, int numbounds, plane_t &original_plane, winding_t **out, int &num_out)
- {
- hlassert(windings);
- hlassert(bounds);
-
- winding_t out_windings[MAX_PORTALS_ON_LEAF];
- num_out = 0;
-
- int h, i;
-
- *out = NULL;
-
- Winding wind;
-
- for(h = 0; h < numwindings; h++)
- {
- // For each winding...
- // Create a winding with CWinding
-
- wind.initFromPoints(windings[h].points, windings[h].numpoints);
-
- // Clip winding to original plane
- wind.Chop(original_plane.normal, original_plane.dist);
-
- for(i = 0; i < numbounds, wind.Valid(); i++)
- {
- // For each bound...
- // Chop the winding to the bounds
- wind.Chop(bounds[i].normal, bounds[i].dist);
- }
-
- if(wind.Valid())
- {
- // We have a valid winding, copy to array
- wind.CopyPoints(&out_windings[num_out].points[0], out_windings[num_out].numpoints);
-
- num_out++;
- }
- }
-
- if(!num_out) // Everything was clipped away
- return;
-
- // Otherwise, create out
- *out = new winding_t[num_out];
-
- memcpy(*out, out_windings, num_out * sizeof(winding_t));
- }
-
- // AJM: MVD
- // =====================================================================================
- // GenerateWindingList
- // This function generates a list of windings for a leaf through its portals
- // =====================================================================================
- static void GenerateWindingList(leaf_t *leaf, winding_t **winds)
- {
-
-
- winding_t windings[MAX_PORTALS_ON_LEAF];
- int numwinds = 0;
-
- int i;
-
- for(i = 0; i < leaf->numportals; i++)
- {
- memcpy(&windings[numwinds++], leaf->portals[i]->winding, sizeof(winding_t));
- }
-
- if(!numwinds)
- return;
-
- *winds = new winding_t[numwinds];
- memcpy(*winds, &windings, sizeof(winding_t) * numwinds);
- }
-
- // AJM: MVD
- // =====================================================================================
- // CalcPortalBoundsAndClipPortals
- // =====================================================================================
- static void CalcPortalBoundsAndClipPortals(portal_t *portal, leaf_t *leaf, winding_t **out, int &numout)
- {
- plane_t *bounds = NULL;
- winding_t *windings = NULL;
-
- GetPortalBounds(portal, &bounds);
- GenerateWindingList(leaf, &windings);
-
- ClipWindingsToBounds(windings, leaf->numportals, bounds, portal->winding->numpoints, portal->plane, out, numout);
-
- delete bounds;
- delete windings;
- }
-
- // AJM: MVD
- // =====================================================================================
- // GetShortestDistance
- // Gets the shortest distance between both leaves
- // =====================================================================================
- static float GetShortestDistance(leaf_t *leaf1, leaf_t *leaf2)
- {
- winding_t *final = NULL;
- int num_finals = 0;
-
- int i, x, y;
- float check;
-
- for(i = 0; i < leaf1->numportals; i++)
- {
- CalcPortalBoundsAndClipPortals(leaf1->portals[i], leaf2, &final, num_finals);
-
- // Minimum point distance
- for(x = 0; x < num_finals; x++)
- {
- for(y = 0; y < final[x].numpoints; y++)
- {
- check = DotProduct(leaf1->portals[i]->plane.normal, final[x].points[y]) - leaf1->portals[i]->plane.dist;
-
- if(check <= g_maxdistance)
- return check;
- }
- }
-
- delete final;
- }
-
- // Switch leaf 1 and 2
- for(i = 0; i < leaf2->numportals; i++)
- {
- CalcPortalBoundsAndClipPortals(leaf2->portals[i], leaf1, &final, num_finals);
-
- // Minimum point distance
- for(x = 0; x < num_finals; x++)
- {
- for(y = 0; y < final[x].numpoints; y++)
- {
- check = DotProduct(leaf2->portals[i]->plane.normal, final[x].points[y]) - leaf2->portals[i]->plane.dist;
-
- if(check <= g_maxdistance)
- return check;
- }
- }
-
- delete final;
- }
-
- return 9E10;
- }
-
- // AJM: MVD
- // =====================================================================================
- // CalcSplitsAndDotProducts
- // This function finds the splits of the leaf, and generates windings (if applicable)
- // =====================================================================================
- static float CalcSplitsAndDotProducts(plane_t *org_split_plane, leaf_t *leaf1, leaf_t *leaf2, plane_t *bounds, int num_bounds)
- {
- int i, j, k, l;
-
- portal_t *splits = NULL;
- int num_splits;
-
- float dist;
- float min_dist = 999999999.999;
-
- vec3_t i_points[MAX_POINTS_ON_FIXED_WINDING * MAX_PORTALS_ON_LEAF * 2];
- vec3_t delta;
- int num_points = 0;
-
- // First get splits
- MakeSplitPortalList(leaf1, leaf2, &splits, &num_splits);
-
- if(!num_splits)
- return min_dist;
-
- // If the number of splits = 1, then clip the plane using the boundary windings
- if(num_splits == 1)
- {
- Winding wind(splits[0].plane.normal, splits[0].plane.dist);
-
- for(i = 0; i < num_bounds; i++)
- {
- wind.Chop(bounds[i].normal, bounds[i].dist);
- }
-
- // The wind is chopped - get closest dot product
- for(i = 0; i < wind.m_NumPoints; i++)
- {
- dist = DotProduct(wind.m_Points[i], org_split_plane->normal) - org_split_plane->dist;
-
- min_dist = min(min_dist, dist);
- }
-
- return min_dist;
- }
-
- // In this case, we have more than one split point, and we must calculate all intersections
- // Properties of convex objects allow us to assume that these intersections will be the closest
- // points to the other leaf, and our other checks before this eliminate exception cases
-
- // Loop through each split portal, and using an inside loop, loop through every OTHER split portal
- // Common portal points in more than one split portal are intersections!
- for(i = 0; i < num_splits; i++)
- {
- for(j = 0; j < num_splits; j++)
- {
- if(i == j)
- {
- continue;
- }
-
- // Loop through each point on both portals
- for(k = 0; k < splits[i].winding->numpoints; k++)
- {
- for(l = 0; l < splits[j].winding->numpoints; l++)
- {
- VectorSubtract(splits[i].winding->points[k], splits[j].winding->points[l], delta);
-
- if(VectorLength(delta) < EQUAL_EPSILON)
- {
- memcpy(i_points[num_points++], splits[i].winding->points[k], sizeof(vec3_t));
- }
- }
- }
- }
- }
-
- // Loop through each intersection point and check
- for(i = 0; i < num_points; i++)
- {
- dist = DotProduct(i_points[i], org_split_plane->normal) - org_split_plane->dist;
-
- min_dist = min(min_dist, dist);
- }
-
- if(splits)
- delete [] splits;
-
- return min_dist;
- }
-
- #endif // HLVIS_MAXDIST
-
- // =====================================================================================
- // BasePortalVis
- // =====================================================================================
- void BasePortalVis(int unused)
- {
- int i, j, k;
- portal_t* tp;
- portal_t* p;
- float d;
- winding_t* w;
- byte portalsee[PORTALSEE_SIZE];
- const int portalsize = (g_numportals * 2);
-
- #ifdef ZHLT_NETVIS
- {
- i = unused;
- #else
- while (1)
- {
- i = GetThreadWork();
- if (i == -1)
- break;
- #endif
- p = g_portals + i;
-
- p->mightsee = (byte*)calloc(1, g_bitbytes);
-
- memset(portalsee, 0, portalsize);
-
- #if ZHLT_ZONES
- UINT32 zone = p->zone;
- #endif
-
- for (j = 0, tp = g_portals; j < portalsize; j++, tp++)
- {
- if (j == i)
- {
- continue;
- }
- #if ZHLT_ZONES
- if (g_Zones->check(zone, tp->zone))
- {
- continue;
- }
- #endif
-
- w = tp->winding;
- for (k = 0; k < w->numpoints; k++)
- {
- d = DotProduct(w->points[k], p->plane.normal) - p->plane.dist;
- if (d > ON_EPSILON)
- {
- break;
- }
- }
- if (k == w->numpoints)
- {
- continue; // no points on front
- }
-
-
- w = p->winding;
- for (k = 0; k < w->numpoints; k++)
- {
- d = DotProduct(w->points[k], tp->plane.normal) - tp->plane.dist;
- if (d < -ON_EPSILON)
- {
- break;
- }
- }
- if (k == w->numpoints)
- {
- continue; // no points on front
- }
-
-
- portalsee[j] = 1;
- }
-
- SimpleFlood(p->mightsee, p->leaf, portalsee, &p->nummightsee);
- Verbose("portal:%4i nummightsee:%4i \n", i, p->nummightsee);
- }
- }
-
- #ifdef HLVIS_MAXDIST
- // AJM: MVD
- // =====================================================================================
- // MaxDistVis
- // =====================================================================================
- void MaxDistVis(int unused)
- {
- int i, j, k, m;
- int a, b, c, d;
- leaf_t *l;
- leaf_t *tl;
- plane_t *boundary = NULL;
- vec3_t delta;
-
- float new_dist;
-
- unsigned offset_l;
- unsigned bit_l;
-
- unsigned offset_tl;
- unsigned bit_tl;
-
- while(1)
- {
- i = GetThreadWork();
- if (i == -1)
- break;
-
- l = &g_leafs[i];
-
- for(j = i + 1, tl = g_leafs + j; j < g_portalleafs; j++, tl++)
- {
- if(j == i) // Ideally, should never be true
- {
- continue;
- }
-
- // If they already can't see each other, no use checking
- if(DisjointLeafVis(i, j))
- {
- continue;
- }
-
- new_dist = GetShortestDistance(l, tl);
-
- if(new_dist <= g_maxdistance)
- continue;
-
- // Try out our NEW, IMPROVED ALGORITHM!!!!
-
- // Get a portal on Leaf 1 that completely seperates the two leafs
- /*split = GetSplitPortal(l, tl);
-
- if(!split)
- continue;
-
- // We have a split, so create the bounds
- GetPortalBounds(split, &boundary);
-
- // Now get the dot product for all points on the other leaf
- max_dist = 999999999.999;
-
- /// Do the first check if mode is >= 2
- if(g_mdmode >= 2)
- {
- for(k = 0; k < tl->numportals; k++)
- {
- for(m = 0; m < tl->portals[k]->winding->numpoints; m++)
- {
- for(n = 0; n < split->winding->numpoints; n++) // numpoints of split portals = number of boundaries
- {
- dist = DotProduct(tl->portals[k]->winding->points[m], boundary[n].normal) - boundary[n].dist;
-
- if(dist < -ON_EPSILON)
- {
- // Outside boundaries
- //max_dot = MaxDotProduct(tl->portals[k]->winding->points[m], boundary, split->winding->numpoints);
-
- //max_dist = min(max_dist, max_dot);
-
- // Break so we don't do inside boundary check
- break;
- }
- }
- if(n < split->winding->numpoints)
- continue;
-
- // We found a point that's inside all the boundries!
- new_dist = DotProduct(tl->portals[k]->winding->points[m], split->plane.normal) - split->plane.dist;
-
- max_dist = min(max_dist, new_dist);
- }
- }
- }
-
- // This is now a special check. If Leaf 2 has a split plane, we generate a polygon by clipping the plane
- // with the borders. We then get the minimum dot products. If more than one split plane, use intersection.
- // Only do this is g_mdmode is 3
- if(g_mdmode >= 3) // For future mode expansion
- {
- new_dist = CalcSplitsAndDotProducts(&split->plane, tl, l, boundary, split->winding->numpoints);
-
- max_dist = min(max_dist, new_dist);
- }*/
-
- // Third and final check. If the whole of leaf2 is outside of leaf1 boundaries, this one will catch it
- // Basic "every point to every point" type of deal :)
- // This is done by default all the time
- for(a = 0; a < l->numportals; a++)
- {
- for(b = 0; b < tl->numportals; b++)
- {
- for(c = 0; c < l->portals[a]->winding->numpoints; c++)
- {
- for(d = 0; d < tl->portals[b]->winding->numpoints; d++)
- {
- VectorSubtract(l->portals[a]->winding->points[c], tl->portals[b]->winding->points[d], delta);
-
- if(VectorLength(delta) <= g_maxdistance)
- goto NoWork;
- }
- }
- }
- }
-
- offset_l = i >> 3;
- bit_l = (1 << (i & 7));
-
- offset_tl = j >> 3;
- bit_tl = (1 << (j & 7));
-
- for(k = 0; k < l->numportals; k++)
- {
- for(m = 0; m < tl->numportals; m++)
- {
- if(l->portals[k]->status != stat_none)
- l->portals[k]->visbits[offset_tl] &= ~bit_tl;
- else
- l->portals[k]->mightsee[offset_tl] &= ~bit_tl;
-
- if(tl->portals[m]->status != stat_none)
- tl->portals[m]->visbits[offset_l] &= ~bit_l;
- else
- tl->portals[m]->mightsee[offset_l] &= ~bit_l;
- }
- }
-
- NoWork:
- continue; // Hack to keep label from causing compile error
- }
- }
-
- // Release potential memory
- if(boundary)
- delete [] boundary;
- }
- #endif // HLVIS_MAXDIST
-
- #ifdef SYSTEM_WIN32
- #pragma warning(pop)
- #endif
-